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J. Phys. A: Math. Gen. 19 (1985) 107-119. Printed in Great Britain 

Conformal invariance and finite one-dimensional quantum 
chains 

G v Gehlen i, V Rittenberg i. and H Ruegg $ 
t Physikalisches Institut, Bonn University, D-53 Bonn 1, West Germany 
$ Ddpartement de Physique Theorique, Universitd de Genive, 1211 Geneve 4, Switzerland 

Received 23 April 1985 

Abstract. Based on previous work of Cardy, we show in a systematic way how using 
conformal invariance one can determine the anomalous dimensions of various operators 
from finite quantum chains with different boundary conditions. 

The method is illustrated in the case of the three- and four-state Potts models where 
the anomalous dimensions of the para-fermionic operators are found. 

1. Introduction 

Recently Belavin er al (1984), Dotsenko (1984) and Friedan er a1 (1984) have shown 
that in two dimensions conformal invariance determines the critical exponents for the 
bulk correlation functions. Cardy (1984~) has subsequently shown how to use confor- 
mal invariance for the surface critical exponents (Binder 1983). 

At this point the situation looks as follows. On one hand for a given central charge 
of the Virasoro algebra (the central extension of the conformal algebra) there is a finite 
set of operators and their anomalous dimensions. One has to find the physical systems 
which correspond to the given central charge and how many operators couple to the 
physical system. On the other hand there are known physical systems (see, e.g. Badke 
et aZl985) where some critical exponents are approximately known but the correspond- 
ing central charge of the Virasoro algebra is unknown. 

Now in two dimensions conformal invariance has implications on the finite-size 
scaling (Barber 1983) behaviour of the correlation functions. In the following these 
implications will be used in trying to determine the central charges and operators 
which correspond to certain physical systems and their correlation functions. 

It was noticed by Luck (1982), Derrida and de Seze (1982), Nightingale and Blote 
(1983) and Privman and Fisher (1984) that for a strip with N lattice spacings and 
periodic boundary conditions, the inverse correlation length K behaves at the critical 
point of the infinite system like 

where 

and x is the scaling dimension of the operator concerned. It was shown by Cardy 
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(1984a) that the abovementioned observation is a consequence of conformal invariance. 
Cardy (1984b) has also shown that the value of the constant A in (1.1) for other 
boundary conditions is related to the scaling dimensions of other operators. 

There is considerable uncertainty in the identification of the central charge due to 
the only approximate knowledge of the scaling dimensions obtained from (1.2). If 
one is able to consider several operators, this uncertainty is greatly reduced, and since 
finite-size scaling allows one to identify new operators, this method is particularly 
interesting. 

Finite-size scaling can be used very efficiently for quantum chains and the extension 
of the ideas of finite-size scaling on strips to quantum chains which was developed 
during the last year (Penson and Kolb 1984, Gehlen er a1 1984, 1985, Burkhardt and 
Guim 1985) will be used in the present study. 

It is the aim of this paper to show in a comprehensive way how to apply the ideas 
of finite-size scaling and conformal invariance to quantum chains in order to put in 
evidence various operators and find their anomalous dimensions. Our method is 
checked for the n-states Potts model ( n  = 2,3,4).  Other applications to six- and 
eight-state models will be published elsewhere (Gehlen and Rittenberg 1985). This 
paper is organised as follows. In 9 2 we review the basic knowledge on the unitary 
representations of the Virasoro algebra. We also show that for a given central charge 
we have a set of para-fermionic operators (Kadanoff and Ceva 1971, Fradkin and 
Kadanoff 1980). This observation will be proven useful for the three- and four-states 
Potts models. In § 3 we briefly review the implications of conformal invariance on 
finite-size scaling on strips with different boundary conditions. We add here an 
observation on the behaviour of the energy-energy correlations which will be heavily 
used in 8 5. In Q 4 we formulate the consequences of conformal invariance on the 
finite-size scaling behaviour of Z,, symmetric finite one-dimensional quantum chains. 
These systems are defined by a Hamiltonian which in some cases can be obtained 
taking the anisotropic limit of the transfer matrix corresponding to a two-dimensional 
spin system (Kogut 1979) and one might get the false impression that conformal 
invariance is lost. In fact one may look upon the Hamiltonian as defining the equation 
of motion of the relevant operators and search for the implication of conformal 
invariance at the critical point. Among other things conformal invariance fixes the 
time scale and thus the normalisation of the Hamiltonian. This aspect is discussed in 
detail fcr the Ising case in the appendix. The advantage of considering quantum chains 
is two-fold. The convergence of the estimates for the critical exponents is better than 
for the transfer matrix (the strip case) and, for a given symmetry of the problem one 
can find a self-dual Hamiltonian with a known critical point whereas this possibility 
might be lost in the transfer matrix case. 

In 9 5 we discuss our numerical results for the Z ,  and Z, case. It turns out that 
the convergence is excellent in the Z, case and fair in the Z, case. The anomalous 
dimensions of the Z,  para-fermionic operators are determined, to our knowledge for 
the first time. For completeness the known exact results of the Z, case are also 
mentioned. Our conclusions can be found in § 6. 

2. Conformal invariance and critical exponents 

We first remind the reader of basic knowledge about the applications of conformal 
invariance to two-dimensional spin systems. If we consider a system defined in the 
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(x, y)  plane and write 

Z = x + iy, Z = x - i y  (2.1) 

( ~ A ( z I ,  Z ~ ) & A , ( Z Z ,  Z2))= ~ A A . ( Z , - Z J ~ " * ( Z ~  -Z*)-25A 
the two-point function is 

(2 .2)  

where dA,  dA, are given operators and AA, AA are the anomalous dimensions. One 
denotes 

- 
XA = A A +  AA, S A =  A A -  A A  (2.3) 

where xA is the scaling dimension appearing in (1.2) and sA is the spin of the operator 
4A. Under a conformal transformation 

w = w ( Z )  (2.4) 

one has of course 

dA(Z, Z) + (dW/dZ)3A(dW/dZ)iA&A( W, W). (2 .5)  

To a given physical system corresponds a central charge c of two Virasoro algebras 
given by the generators L k  and L k :  

(the Lk generators satisfy the same algebra as Lk). 

central charge c in (2 .6)  is quantised: 
We are interested here in unitary representations of the algebra (2 .6) ,  hence the 

(2.7) c = 1 - 6 /m(  m + l ) ,  m = 3 , 4 , .  . . 
and so are A A  and AA: 

[mq - ( m  + l)p]'- 1 
4 m ( m + l )  

1 s p c  m -  1 , 1  s q s  m - A , ,  = A m - p , m - q + l -  (2.8) 

and a similar expression for AP,,,,, 

(Dotsenko 1984): 
For the n-states Potts models considered in § 5 one takes m odd in (2.7) and chooses 

n = 4 cos - ( m 1 1 ) 2 .  (2.9) 

The spinless (s = 0, A = A) operators are identified as follows. The energy density E 

corresponds to 

(2.10) 

and the order (disorder) operators ~ ( p )  have the same dimensions and correspond to 

(2.11) 
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Cardy ( 1 9 8 4 ~ )  has suggested that one can extend the applications of conformal 
invariance to surface exponents, identifying 

(2.12) 

and that x , ,~  = 2 independent of the system. 

takes m even in (2.7) and chooses 
For completeness we consider also the n-states tricritical Potts models where one 

n =4(cos ( r / m ) ) 2 ,  (2.13) 

The identification of the operators is 

x, m - 2  
2 4 ( m + 1 )  

=: - = - 

x h  77 m 2 - 4  - _ - _ _  
A m / , . m / , -  - - 2 4 1 6 m ( m + 1 )  

and one can make an educated guess for the surface exponent: 

(2.14) 

(2.15) 

As will be shown in § §  3 and 4 the techniques of finite-size scaling are ideal to test 
(2.12) and (2.15). Up to now we have considered only spinless operators. It was 
suggested by Fradkin and Kadanoff (1980) that for a system defined on the Abelian 
group Z, one has also operators with spin obtained from the short distance expansion 
of order and disorder operators and that the corresponding values of the spin should 
be 

s = Q d / n  (2.16) 

where Q, Q = 1 , .  . . , n - 1 .  Since for the case n = 2 one has fermionic operators, for 
n > 2 the corresponding operators are called para-fermions and we will denote them 
by I)~,G. We are able to identify, using (2 .8) ,  part of the para-fermionic operators. 
If one takes m odd, the following operators have spin s = A - A = I /  n(  I = 1 ,  . . . , n - 1): 

U n  'A2i .z i - i  - A m - * / , m - 2 /  n = i ( m + l ) .  (2.17) 
- 

For m even one has 
- 

11 n = A 2 / + 1 , 2 ,  - A m - > / + l , m - 2 1 + 1 ,  n = m j 2 .  (2.18) 

It is amusing to notice that for n = 2 one gets m = 3 and m = 4 (corresponding to 
the Ising and tricritical king model), for n = 3 one gets m = 5 and m = 6 (corresponding 
to the Z ,  Potts and tricritical Potts models) and presumably m = 7 and 8 correspond to 
systems which contain a Z,. The four-states Potts model corresponds to m +CO (see 
(2 .9)  and (2 .13))  and has had to be treated with care. One takes the limit with s fixed 
of (2.17) or (2.18) and gets using (2.8): 

A - ; i = s  A + = f ( s 2 +  1 ) .  

For example the operator with s = f has A = & and = k. 
(2.19) 
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One can also identify operators with unit spin (s = 1). One has for m 2 5 odd 

A(m- t1 ) /2 , (m-3 ) /2 -L (m- , ) /Z , (m-3 ) /2  = 1 (2.20) 

A m / 2 + 2 , m j 2 - A m / 2 + 2 , m / 2 + 1 =  1. (2.21) 

A = =  16, L = X  16 * (2.22) 

and for m 2 6 even: 
- 

In the m infinity limit one obtains (using (2.8)) 

The values (2.22) are different from those obtained taking s = 1 in (2.19). We have 
devoted such a large space to para-fermionic operators because in § 5 we will try to 
identify them. 

3. Conformal invariance and finite-size scaling 

It was noticed by Cardy (1984a, b) that at the critical point the two-point correlation 
function in the z plane determines the correlation function on a strip with periodic 
boundary conditions. Using (2.2) and (2.5) we have 

( + A ( W I ,  m l ) 4 A ( w 2 3  $ 2 ) )  

= (- dw, -) dw, -* A (- dGl -) dG2 -'A (z, - 2,) -2AA(  2, - 2 2 ) - 2 ' A  

dZ, dZ, d 2 ,  d.?, (3.1) 

with 

w = u + i v = ( N / 2 n ) l n Z ,  -CC < U < CO, -$N s U S+N. (3.2) 

For the inverse correlation length K A  of the two-point function parallel to the strip 
( U  fixed) we get: 

lim N K A  = 2TxA. (3.3) 
N-oc 

By mapping the half-plane into the plane one obtains that the inverse correlation 
length K A  for the strip with free boundary conditions is related to the surface exponents 
KA,S: 

lim N K A  = T X ~ , , .  (3.4) 
N+o3 

Let us now see what happens if one takes other boundary conditions. In order to 
do so let us consider the partition function of a spin system defined on 2, (Marcu et 
a1 1981) and take a strip geometry: 

z = (3.5) 

d = ak(Wk(av,L-av+i.u)+ W k ( a u , u - a u , L + i ) )  (3.6) 
oc N n - l  

u=-m v = l  k = l  

where 

O s  aU+ s n - 1, w = exp(2ni/n) (3.7) 

and ak are coupling constants. (For the n-states Potts models they are equal.) One 



112 G V Gehlen, V Rittenberg and H Ruegg 

can define n - 1 types of boundary conditions taking 
I - 

Ou,N+l  = Q, Q = 1,2, . . . , n - 1 (3.8) 

(the case 0 = 0 corresponds obviously to the periodic case). It was suggested by Cardy 
(1984b) that the inverse correlation length of an order operator wQ for a strip with 
boundary conditions 6 should behave like 

lim N K Q  = 2 T (  A Q,O -k 0.0 - 2A 0) .  (3.9) 
N -22 

Here A0 = 
are the anomalous dimensions of the para-fermionic operator 

are the anomalous dimensions of the dual operator p~ and AQ.0, i Q , O  

4 ~ ~ 0 -  ~ Q P O .  (3.10) 

Using the method which let Cardy to derive (3.9) it is easy to show that if one 
considers the energy-energy correlations with boundary conditions 0 (0 # 0) the 
inverse correlation length is 

lim NK, = 2.n (3.11) 

independent of 0. This observation will turn out to be very important when we consider 
quantum chains. 

Finally it was shown by Cardy (1984b) that the interfacial tension Z at T,, equal 
to the difference between the free energies per unit length of a strip with periodic 
boundary conditions and 6 boundary conditions is 

lim N = 4 7 r A ~ .  (3.12) 

N-CS 

N-CS 

This equation was verified numerically in the Ising case by Malaspinas (1985). 

4. Finite-size scaling for quantum chains 

We consider 2, symmetric quantum chains containing N sites. They are defined by 
the Hamiltonians 

Here the operators w, and Ti are defined by the tensor products 

cTj= 1 0 1 0  . . . 0 w O l . .  . O 1  
v 

'ith' site 

and 

m =  

(4.2) 

0 0  . . .  1 \  
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where o = e2ni’n, ak and bk are coupling constants. Hermiticity requires ak = an-k, 
bk = bn-k Self-duality is obtained when bk = ak. The Potts models are obtained when 
ak = bk = 1. The Hamiltonians (4.1) have various symmetries corresponding to different 
choices of the coupling constants ak and b,. In (4.1) 0 = 0,1 , .  . . , n - 1 specifies the 
boundary conditions. For the case of free boundary conditions one simply drops the 
last term in (4.1). 

The operator 
N G =  q,(mod n )  

i = l  

where 

q=[ . ,  

n - 1  

(4.4) 

(4.5) 

commutes with the Hamiltonians and has eigenvalues Q = 0, 1 , .  . . , n - 1. Thus the 
Hamiltonians H‘” have a block diagonal form corresponding to- the different values 
of Q. We denote those blocks by and their-eigenvalues by E&,)( r )  ( r  = 0, 1,2,  . . .). 
E&O’(O) denotes the ground state of H&,), E&,’(l) the first excited state, etc. Notice 
that translational invariance has to be used in diagonalising HbQ’ and thus to label 
the states corresponding to E $ ( r ) .  For the case of free boundary conditions the 
Hamiltonians H(F) will have blocks that will be denoted by H g ’ .  

Assume now that for a given number of sites N, we diagonalise the blocks H&“ 
and Hg) at the critical point. We can now use the results of the last section and 
assume that the results valid for the transfer matrix of a spin system (finite-size scaling 
on a strip) applies to Hamiltonian chains. This extension is not obvious but we think 
that the example of the Ising chain discussed in detail in the appendix will help the 
reader in the understanding of this ansatz. From (3.3) we have 

N-CC lim N(E$’(O) - E ~ ’ ( o ) )  = P$) = 4 ~ 5 ~ ~  

N-CC lim N (  Ei“(0) - EP’(0 ) )  = Pio) = 475110 

Q = 1 , 2  , . . . ,  n-1 .  (4.6) 

Here A, = &, are the anomalous dimensions of the order operators vQ From (3.12) 
we have 

* 
Q = 1,2, . . . , n - 1 (4.7) 

where A 0  = he are the anomalous dimensions of the disorder operators po.  In (4.6) 
and (4.7), 6 represents an unknown constant which appears because as opposed to 
the transfer matrix one can always multiply the Hamiltonians (4.1) by an overall factor. 
This overall factor can be fixed however if one requires that the equations of motion 
defined by the Hamiltonians are conformal invariant (see the appendix for the Ising 
case) or by other requirements derived from conformal invariance as will be shown 
below. From (3.9) and (3.12) we have 

N - w  lim N ( E ~ ’ ( O ) - E ~ ’ ( O ) )  = P & “ ’ = 2 ~ & ( A Q 3 ~ + & . o , ~ )  Q , d = 1 , 2  ,..., n - 1 .  (4.8) 

Here Aao and AQ,o represent the anomalous dimensions of the para-fermionic 
operators +,,a. 
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We now consider the equivalent of the energy-energy correlations. From (3.3) we 
have 

lim N ( E p ’ (  1 )  - EAO’(0)) = R‘O’ = 4 n 5 A E  (4.9) 
N-03 

where A E  = & E  are the anomalous dimensions of the energy operator. From ( 3 . 1 1 )  we 
get 
lim N ( E i B ) ( l ) -  Eid’(0))= R‘d’=2n[ Q = l , 2  , . . . ,  n - 1 .  (4.10) 

Similarly we have 

* 

N -03 

lim N(E$’( l ) -Eg’(O))=  R Q = 2 r (  Q = 1 , 2  , . . . ,  n - 1 .  (4.11) 
N-oo 

The last equation has a simple physical meaning. In a conformal invariant system the 
one-particle spectrum in the Q band verifies the dispersion relation 

E = lp 1 = 2nK 1 N, K =0, 1 , .  . .. (4.12) 

Here E is the energy and p the momentum. Thus the energy splitting A E  between 
the first excited state ( K  = 1) and the ground state ( K  = 0) is 

AE = 27r/ N (4.13) 

hence one obtains (4.1 1 )  if the Hamiltonian is not properly normalised. Conversely 
(4.10) and (4.11) can be used to determine 5. 

We now consider the case of free boundary conditions. From (3.4) we have 

lim N(E$’(0)-EAF’(O))=PF’= ~ ( X Q , ~  Q = 1 , 2 , .  . . , n - 1 (4.14) 
N-OZ 

where x ~ , ~  is half 711 for the order operator go. Similarly 

lim N( EdF’( 1 )  - EF’(0 ) )  = R‘F’ = 2775 
N - a ,  

(4.15) 

where we have used the fact that x , ,~  = 2. Equation (4.15) can also be used to determine 
( but compared with (4.10) and (4.11) the convergence is expected to be worse as 
usual when one compares free boundary conditions with periodical boundary condi- 
tions. 

Let us now specialise to the n-states Potts model ( n  = 2,3  and 4). These systems 
have a continuous phase transition at A = 1 .  Since these sys!ems are self-dual and have 
a large symmetry the number of independent matrices HhQ’ is small. Indeed at A = 1 
we have the symmetry relation 

We also have for n = 3 

For n = 4 we have 

(4.18) 
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From (4.16)-(4.18) follows that (4.6) and (4.7) are the same and are independent 
of Q. Equations (4.10) and (4.11) also coincide and are Q independent. Finally 
equation (4.j4) is Q independent. In the next section we give the numerical estimates 
of Pb?, R'Q', P:) and RF. 

5. Numerical results for the three- and four-states Potts models 

We first summarise the exact results for the Ising ( n  = 2) chain. One has (Burkhardt 
and Guim 1985, Gehlen et a1 1984, 1985): 

pi') = f r ,  Pi'' = 77, p y !  = t r  
(5.1) 

r. R(0) = R ( l )  = R(Fi = 2 

We thus obtain 

in agreement with (2.10), (2.11), (2.12) and (2.17). 
We now consider the three-states Potts model. The values of R"', R")  and R(F) 

for various values of the number N of sites are given in table 1. The estimates for 
large N obtained using the Van dem Broeck-Schwartz (1979) approximants are given 
in table 2 (the errors are very subjective). Also in this table are the estimates for Pi"', 
P!')  and PjF) obtained previously (Gehlen et a1 1984). The various estimates are 

Table 1.  Values for R"', R'" and RIF' for N sites (three-states Potts model). 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

4.618 802 154 
4.684 658 438 
4.665 156 333 
4.636 532 131 
4.610 183 586 
4.587 651 584 
4.568 621 751 
4.552 490 080 
4.538 702 229 
4.526 804 332 
4.516 442 421 
4.507 340 257 
4.499 281 621 

3.516611 478 
4.546 792 350 
4.939 283 234 
5.125 531 375 
5.227 333 554 
5.288 609 093 
5.328 145 545 
5.355 025 785 
5.374 061 384 
5.387 988 284 
5.398 452 525 

3.829 708 431 
4.341 545 971 
4.607 832 380 
4.768 843 870 
4.876 165 21 1 
4.952 683 534 
5.009 979 488 
5.054 503 072 
5.090 118 384 
5.1 19 276 499 
5.143 605 300 

~ ~ ~~ 

Table 2. Estimates and predictions for the R and P quantities (three-states Potts model). 

Estimates Prediction Estimates Prediction 

4.42-4.47 4.35 pco, 0.725-0.726 0.725 R'o) 

2.53-2.54 2.54 R(I1 5.44 5.44 pcli 

1 1.80-1.82 1.81 R'F! 5.39-5.45 5.44 p ( F )  
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compared with the predictions obtained choosing 6 = 5 . 4 4 1 2 ~  and taking 

(5.3) 

in agreement with the identification of the operators done in 0 3. It is interesting to 
observe that one obtains the s =+ para-fermion and  not the s =$  para-fermion. The 
reason why one operator occurs and not the other is not known to the authors. 

One lesson one derives from table 2 is that the convergence is excellent for P:", 
P\') and PiF', very good for R"' (which determines 6 )  and poorer for R'O' (which 
determines A E )  and R'F' (which provides a check for the value of 6). 

We now consider the four-states model. The values of Pio', P!", P',*', Pi2' and PiF) 
for various numbers of sites are given in table 3. The corresponding values for Rio', 
R") and R'F' are shown in table 4. The estimates for the same quantities are given in 
table 5. (The estimate for R'O' is very unstable.) How about the predictions? We 
determine 6 from R"' and take 6 =  4 . 9 6 1 2 ~ .  It is amusing to observe that the values 
of 6 for n = 2 , 3  and 4 are very well given by the expression 

(5.4) 1 I / ( f l - l )  ( = z n  

If (5.4) is an  exact relation or has a more profound meaning remains to be seen. 

Table3. Values for the P quantities for N sites (four-states Potts model). 

N P$O) pcl, pC2l P:2' p iFl  

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

0.763 932 0225 
0.723 830 361 1 
0.707 687 3386 
0.698 867 8283 
0.693 215 1284 
0.689 222 0907 
0.686 212 8846 
0.683 839 0244 
0.681 902 0520 
0.680 280 2272 

2.15224094 
2.227 339 65 
2.268 882 64 
2.295 648 80 
2.314 612 56 
2.328 922 41 
2.340 211 12 
2.349 413 83 
2.357 107 23 

2.585 786 44 
2.733 694 51 
2.795 005 86 
2.827 919 81 
2.848 473 28 
2.862 625 23 
2.873 049 39 
2.881 112 02 
2.887 581 00 

2.000 000 00 
2.054 224 95 
2.090 697 38 
2.116 195 04 
2.135 085 08 
2.149 739 97 
2.161 517 46 
2.171 245 05 
2.179 455 44 

1.317 837 25 
1.474 745 33 
1.570 768 44 
1.636 808 09 
1.685 656 18 
1.723 624 40 
1.754 213 73 
1.779 535 66 
1.800 946 36 

Table 4. Values for the R'O), R"' and R'F' for N sites (four-states Potts model). 

N Rio) R(1) R(F.1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

4.000 000 000 
3.908 326 913 
3.805 861 043 
3.724 244 595 
3.660 009 502 
3.608 408 026 
3.565 991 472 
3.530 403 272 
3.500 019 578 
3.473 695 495 

3.236 067 977 
4.170 111 928 
4.524 072 624 
4.691 080 380 
4.781 786 166 
4.835 992 237 
4.870 685 679 
4.894 060 129 
4.910 445 966 

3.464 101 615 
3.925 050 645 
4.164 514937 
4.309 184691 
4.405 568 759 
4.474 276 412 
4.525 725 409 
4.565 713 337 
4.597 71 1 066 
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Table 5. Estimates and predictions for the R and P quantities (four-states model). 

Estimate Prediction Estimate Prediction 

R(0) 3.2-3.4 2.48 pC0) 0.63-0.64 0.62 
2.45-2.55 2.63 

4.86-4.94 4.96 pcll 2.97-3.03 3.10 R ( F )  

p ( F )  2.2-2.3 2.48 

R(1)  4.94-4.97 4.96 pCl, 

P y  2.22-2.27 

The prediction for P\O) was obtained taking Ah = & and that for R‘O’ taking A? = i. 
If one uses R‘O) in order to get A, one gets A E  = 0.33. 

The prediction for P(IF’ was obtained using Cardy’s ( 1 9 8 4 ~ )  prediction for 711 namely 
vIl = 2. Our value for Pi‘’ suggests vil = 1.81. If one uses PiF) and Pi’) together with 
77 = f  one obtains vll = 1.77. Both values are in the middle between the value two and 
another estimate of vIl obtained using the transfer matrix (Droz et a1 1985) where one 
obtains vll = 1.54. 

We now consider the para-fermionic operators. They are related to P\’), Pi’) and 
Pi2) .  We use (4.8) and (2.19). In agreement with Fradkin and Kadanoff (1980) it is 
natural to take for Pi” the para-fermion with spin s = and for Pi” the para-fermion 
with s = i. The agreement between the estimate and the prediction is very good indeed. 
What can we say about Py’? If one uses (2.16) one gets s = 1 which combined with 
(2.22) would give Py) = 10.5! We have not been able to-find the operator corresponding 
to P”’. 

It is interesting to observe that para-fermions with spin a and show up but not 
with s =:. Like in the 2, case we have no explanation for this phenomenon. 

6. Conclusions 

We have shown (see § 4) how using finite-size scaling for quantum chains with different 
boundary conditions one can identify various operators and compute their anomalous 
dimensions. Numerical estimates obtained for the three- and four-states Potts models 
have allowed 11s to identify the spin f (for Z , )  and spin and (for 2,) para-fermions. 
We have also obtained an estimate for the vl l  for Z4 ( vll = 1.8) in agreement with the 
prediction vll = 2. 
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Appendix. The quantum Ising chain and conformal invariance 

In this appendix we show how conformal invariance fixes the normalisation of the 
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Hamiltonian describing a quantum chain. We consider the Z2 symmetric Hamiltonian 

1-Y 
2 

where U:, ai and U: are Pauli matrices, h and y (0<  y s  1)  are coupling constants. 
For y = 1 one recovers the n = 2 case of (4.1). (We have not written the boundary 
term explicitly.) This system has an Ising transition for h = 1 for any non-vanishing 
y. Gehlen et a1 (1984, 1985) have shown that for this system one has 

pco, I - -277Y, L Py' = r y ,  Py' = f r y .  ('42) 

Comparing these results with (5 .1)  we deduce that the normalisation factor 5 of the 
Hamiltonian (see (4.6), etc) should be equal to y. In other words, considering the 
Hamiltonian H/ y one would obtain the same results as from the transfer matrix. We 
will deduce in two ways that 6 = y directly from ( A l )  using conformal invariance. 

We first ask that the equations of motion are conformal invariant. We perform a 
Jordan-Wigner transformation (for a review, see, e.g., Kogut 1979) and get 

H = ii c (( 1 + y)A,+, B, + ( 1 - Y )A,B,+I + 2hAlB, 1 ('43) 

where A,, B, are Hermitian Clifford matrices: 

A ] ) = { B ! ,  BJ)=s,, {A,, B,) = 0. ( '44) 

The (Euclidean) time evolution of the A, and B, operators is 

dA, /dr  = [H, A,] =$y(B,+, - B,-,)+ihB, -i i(Bz+l+ B, I )  

dB,/dr  = [H, B,]  =fiy(A,+,  -A, - l )  -ihA, +fi(Ac+l  - A r - l ) .  (AS) 

We now take the continuum limit, h = 1 and get (with B,+, - BJ-l + 2 aB,/ay) 

aA/ar  = i y  aB/ay, aB1a.r = iy  aAlay. (Ab) 

Denoting 

C = ( A  + B ) / J ,  D = (A - B ) / &  ('47) 

and calling x = yr  (which means that one take as Hamiltonian H/ y)  we get 

aClaZ = 0,  aD1a.Z = o (AS) 

with z = x + iy. This shows that H/  y is conformally invariant. 

be diagonalised and one obtains 
There is a second way to find the normalisation factor. The Hamiltonian (A3) can 

+ y 2  sin' - 
H = f ( y , h ) +  K = -( "2- 1 j [(h-cos- N 2rK1"2 a"KaK 

where uK are fermionic annihilation operators and f the ground state energy. For 
h = 1 and small momenta p = 2 r K /  N, the one-particle spectrum is 

E = YIP/ ('410) 

and conformal invariance implies again that 6 = y. 
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